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Intermolecular structure factors of macromolecules in solution: Integral equation results
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The intermolecular structure of semidilute polymer solutions is studied theoretically. The low-density limit
of a generalized Ornstein—Zernicke integral equation approach to polymeric liquids is considered. Scaling laws
for the dilute-to-semidilute crossover of the random-phase approximdkiBA)-like structure are derived for
the intermolecular structure factor on large distances when intermolecular excluded volume is incorporated at
the microscopic level. This leads to a nonlinear equation for the excluded volume interaction parameter. For
macromolecular size-mass scaling exponentbove a spatial-dimension dependent valyes 2/d, mean-
field-like density scaling is recovered, but fex v the density scaling becomes nontrivial in agreement with
field-theoretic results and justifying phenomenological extensions of the RPA. The structure of the polymer
mesh in semidilute solutions is discussed in detail and comparisons with large-scale Monte Carlo simulations
are added. Finally, a possibility to determine the correction to scaling expeneig suggested.
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[. INTRODUCTION the PRISM approach to polymer melts whether it also cor-
rectly captures the long-ranged correlations of semidilute
Whereas the conformational statistics of a single flexiblepolymer solutions. As liquid correlations in melts generally
polymer chain in dilute and semidilute solutions are under-are short-ranged, an approach like PRISM appropriate for
stood rather well, less is known about the intermoleculadense systems need not be a useful approatseta) dilute
packing. It is well understood that a semidilute polymericsolutions, where long-ranged correlations are of interest.
solution builds up a temporary mesh with a mesh size, thélevertheless, the simplification of the PRISM equations to
density screening length,, which for macromolecular so- 10w polymer densities worked out here will be argued to
lutions can become large compared to the length scales chaptovide a useful description of the intermolecular correla-
acterizing the individual monomef4,2]. However, the in- tions building up the polymer mesh in polymer solutions
termolecular packing, inside the mesh but still on length[10,13,14. Criteria for the quality of the approach will be
scales large compared to the chemistry-dependent loc&stablished from comparisons with simulations, field theory,
length scales, is as yet unclear. It has been the focus of recepid mean-field results.
neutron scattering experimerit3,4], scaling considerations ~ The aspect of screening of the intramolecular excluded
and field-theoretic calculatiorig,5], and of computer simu- Vvolume shall be neglected in this paper. It would require the
lations [6]. Older theories for the intermolecular structure, use of self-consistent PRISM theory, which is considerably
which either used the random-phase approximatieRA) more demandin@i10]. Moreover, the errors made, when ne-
[7] or the assumption of Gaussian intermolecular correlationglecting the crossover to Gaussian intramolecular correla-
[8], failed to incorporate the non-mean-field-like correlationstions on length scales large compared to the density screen-
on scaleZ, of semidilute polymer solutions. The recent field- ing length &, will not affect the scalings of the
theoretic results lead to contradicting results as will belntermolecular correlations for distances smaller thgn
pointed out and resolved in this paper. which are the main focus of this paper. Thus, in the follow-
Integral equation theories for simple liquids directly ad-ing the intramolecular correlations shall be characterized by
dress the problem of interparticle packing in dense fluidsa density-independent polymer structure facigy, which,
Starting with the work of Schweizer and Curfi@], this ap-  for macromolecules oN segments at the positions,, is
proach has successfully been extended to macromolecul@efined as follows:
liquids. The polymer reference interaction site model
(PRISM) integral equations have been fruitfully applied to
describeinter alia the intermolecule correlations in dense
homopolymer systems, polymer blends, and block copoly-
mer melts[10]. PRISM is a macromolecular generalization Its full functional form will not be required. Knowledge of
of the reference interaction site model theory of small mol-its variation for small, large, and intermediate wave vectors
ecules of Chandler and Andersghl,12. The low-density  suffices[1,2].
limit of PRISM theory shall be worked out in detail in this For small wave vectors, the number of scattering units,
paper in order to discuss the density correlations on the meghe index of polymerizatioMN, whereN>1 for macromol-
size length scale. This paper either exterid8—15, or  ecules, and the global molecular size, the radius of gyration
complement$16,17] previous studies. Ry, can be obtained from a scattering experiment measuring
It is a priori not related to nor required for the success ofwg:
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Their statistical average vanishes except for zero wave vec-
for qRy<1, (2 tor, (0g)=0840-

The total structure factds, as measured, for example, by
coherent neutron scatterif@,19] is given by the second
noment of the wave-vector-dependent density fluctuations,
rom Eq. (6):

1
wq—>N(1—aq2R3+---

whered is the spatial dimension. In an intermediate wave-

vector range, the macromolecule is supposed to be sel

similar. This leads to a power-law behaviordny determined

by the fractal dimensiord:=1/v: 1

1 Sq:m<Q;Qq>_nN5q,0
wq—>(q7)1; for 1/Ry;<q<1l/o. (3 . \

_ >SS (@ 0N, (@)

The fractal exponent also determines the size-mass scaling, NNiT=1 o/5=1 '

RyaN”, where a smooth crossover from E@) to Eq. (3)

is assumed aroungiR,~ 1. The assumption of an intermedi- The total density fluctuations are straightforwardly separated

ate self-similar molecular structure rules out the study ofinto density fluctuations on the identical polymey, the

compact macromolecules, e.g., hard-spherelike colloids, buntramolecular structure factor, and on different polymers,

is appropriate for polymer chains in googs=0.588.., or® hq, the intermolecular structure factor.

solvents,v=3, or for rodsv=1, which share some proper-

ties with semiflexible polymer molecules like actin or DNA Sq=wqt e hy, (8)

[2,1,18. The Kuhn’'sche-segment sizein Eq. (3) is of the

order of local polymer-specific length scales where micro\yhere the intramolecular part has already been defined in Eq.

scopic segmental packing effects influence the complicategh) above. The intermolecular structure factoy describes

structure ofwq. This chemistry-dependent variation @f,  the packing of different molecules and is given by the re-
aroundqo~1 can be included in PRISM studi¢s0], but  stricted surmi #j:

shall be neglected here. Only the self-scattering contribution,

a= B in Eqg. (1), which is the only remaining contribution for Vv n N o
large wave vectorgjo>1, is universal and needs to be con- he=—z > > (e <rg>frg)>>_\,5q’0_ )
sidered: NN 5Ti#) aB=1

wg—1 for go>1. (4) The intermolecular structure factor is the Fourier transform

of the intermolecular pair correlation functiafgr):
Thus, a generic smooth crossover from the point particle
self-scattering term, E@4), to the self similar intramolecular 4 o
correlations, Eq(3), will be assumed. Chemistry-dependent hqu dre'™g(r)—1]. (10)
local packing will show up in all correlation functions on

microscopic length scales but will not, except for in prefac-rno nair correlation function describes the probability aver-
tors, affect the intermolecular structure on global Iengthaged over all segments of finding at a distandeom site
scales like the molecule sz, or the mesh widthe,, as 4 oleculei, another segmens of a different moleculg.

will be shown explicitly.. . . . From Egs.(9) and(10), one obtains
In order to characterize the total, including the intermo-

lecular, density correlations of an interacting polymer sys-
tem, further correlation functions need to be introduced. In
order to compare them with results from other approaches it
is useful to recall their definition as used in PRISM theory

[10,19. To be specific, let us consider polymers withN  g(r) is non-negative and approaches unity for large separa-
scattering units in al-dimensional volume/, where in the  tionsr, because then statistical correlations between the sites
thermodynamic limit the number density of segments, a“g) andrfgj) have vanished19].
=nN/V, is kept fixed, i.e.n,V— with ¢=const. The lo- Implicit in the Egs.(7)—(11) is a neglect of a special site
cal, fluctuating density is dependence of the density fluctuations as it might, for ex-
0N gmple, Iarise frorr;l chain—en(_j efrf]ects for Iingar polyrrg[iﬁ]s
- tar polymers, where sites in the core region possibly expe-

9(“):21 ;1 (r=r(v)), () rience very different local-density fluctuations than sites in
the star arms, also would require a more elaborate treatment
[10]. Nevertheless, for arbitrary macromolecular architec-
tures, the above-defined correlation functions are experimen-
tally measurable, at least in principle, and can also be deter-
mined from computer simulations. They contain information
noN about the local liquid structure and remain meaningful in the
Qq:f ddr eiar Q(r)zzl 21 eiq.rgy_ (6) vrzr;clilse accessible density range, from dilute solutions to
1=1 a= .

N
> 2 (se-P-rDy). @y

(r) y
r)=
I= N s o

with equilibrium averag€o(r,t))=p0. The spatial compo-
nents of the density fluctuations shall be denotedoy
where
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Il. PRISM INTEGRAL EQUATIONS solvent effects are assumed to be taken into account via the
._model for the intramolecular structure, Eq42)—(4).

e e iy " general, the exclded volume consra, 29, nd
. 9 y the PY closure, Eq(15), lead to a discontinuity in the pair-

account in Eq(1), PRISM theory{9,10) explicitly enforces correlation functiong(r) and in the direct-correlation func-

intermolecular excluded volume by requiring the pair core-. c(r) at contact:
lation function to vanish for distances smaller than the seg- '

ment sizeR. 04:=9(r\\R)>0,

g(r)=0 for r<R. (12 c(R—):=c(r /R)#0. 1o

Building upon the Ornstein-Zernicke approach so successt,\IIote that the actual values gf andc(R—) will be depen-

for simple liquids [19], an averaged molecular site-site q details of th hemi h
Ornstein-Zernicke-like equatiofill,12 is formulated and gnt on gtals o the monomer ¢ emistry, as the segment
size R obviously is a microscopic length. To connect both

can be viewed as definition of an effective potential, the " oo
direct correlation functiort,: quantities it is useful to expres§, and c, as one-

dimensional Fourier transforms,
hg= @wCq(wqtohg). (13

— igr ;
Equations(8) and(13) can also be brought into a RPA-like hg f dre™ j(r),
form, which supports the interpretation of the direct correla- (17)
tion function as an effective potential. ar -
Cq= [ dre'di(r),

Sy =wg - ecy. (14)
with the symmetric functions,

Different from the RPA approacie, is not considered to be
given, but needs to be found from a solution of the nonlinear i o 2 2\ (d-3)2
integral equations. Besides Eq42)—(14), a further equa- J(r):lejlrldSS(g(S)_l)(s —r9) ’
tion, the “closure” approximation, is required to determine
the solution. The most simple and yet appropriate closure to R
treat the intermolecular steric repulsion is the Percus—Yevick  i(r)=0(R— |r|)Qd_1f ds s ds)(s?—r?)d=372
(PY) approximation, which expresses the expectation that Irl
the effective potential is short-ranged:

(18

where Qu=27%)T(d/2) denotes the surface of the
c(r)=0 for r>R. (15)  d-dimensional unit sphere. Because of E(&2) and (15),
i(r) can be nonsmooth fdr|<R only, while this can hap-
Note that the interaction described byr) is localized on pen forj(r) for [r|=R. Thus, using the large wave-vector
microscopic length scales. Thus, the PRISM equations ddimits, hye—ggq cosqR/q* for g—o and similarly forcy,
scribe the interplay of local intermolecular steric interactionsand the large wave-vector asymptotewgf, see Eq(4), Eq.
and long-ranged intramolecular correlations due to macro¢l3) connects the discontinuities gi{r) andc(r) atr=R,

molecular connectivity9,10]. leading to
Thread limit for (semi-) dilute solutionsn the simplified
non-self-consistent PRISM approach, the intramolecular g¢=—Cc(R—). (19

structure oy, from Eq. (1), is assumed to be given, and o )
(mostly numerical techniques to solve the integral equa- Moreover, one concludes ther) is fmlte. Thus, t_he scallng
tions, Eqs(12)—(15) are employed10]. Note that for a Pade of the Fourier transform of the direct-correlation function
approximation tow, for Gaussian chains with=2 in d with global parametersto be defined belowalso can be
=3 an analytic solution of the PRISM equations on allconnected to the contact value:
length scales existsl6]. The solution technique employing Cnda b . d
the Wiener-Hopf factorization as pioneered by Bax20] Cq=RC(R=)To(qR) =:~guaR™Tc(qR), (20
can straightforwardly be extended to Gaussian chains ijhare the re ; _ dy, @i Xy

. . = X gular functionf (x)=f,-,d% €*Yc(Ry)/
(low) odd dimensions)=5,7,.., but asimpler approach can (R), has a finite value at=0. For the analytically known

also be used in order to study the low-density results Ofog s of the PRISM equations these properties could be

PRISM theory analytically. For the mentioned case, s in shown explicitivi16]. and thev can now be used to simpli
d=3, this was first used 13,14, explicitly justified in e PRI qugtio]ﬁ or low dersiting. Py

[16], and without proof extended to exponentsvithin the In order to extract the large distance solution of the

bounds 1d<»<2/d in [15]. Here, general arguments on the pR g\ equations, it proves useful to shift the microscopic
solutions of Eqs(12)—(15) allow us to find the low-density length scales to zero:

limits in the more general casedk. v andd=2.

The special low-density limit, called the “thread PRISM” R—0, o—0 with o/R=const. (21)
model[13,14), studied in the following assumes that poly-
mer solutions can be modeled as a low-density limit of theln order to evade the trivial limit of a noninteracting ideal
one-component PRISM equations for polymer melts. Speciajas, the length scale of the intramolecular correlations, to be
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denoted byé., which is proportional to the molecular size interacting polymer solution are obtained. Because of Eqg.
é.*Ry, is kept finite by increasing the index of polymeriza- (22), only the long-ranged scaling form of the intramolecular
tion N. structure factor enters:

N—o so that & oN”=const. (22 L 1+0(x%) x—0
. . 0q= W (X=08) = XM X— 00, 28)
Also, in order to keep intermolecular excluded volume ac-
tive, the bare segmental density is increased beyond boundgnd Eq. (23) enforces the molecules to interaét#0, so
that Eq.(26) leads to a transcendental equation determining
e—> so thate/g, =const. (23 A (equivalentlygy), which is the only unknown parameter in

. ) _the thread intermolecular structure factor:
In the thread PRISM equations, there enters a typical density,

the dilute to semidilute crossover densgy , which is fa- 02
miliar from scaling consideratiori4]. As will be shown be- ohg=— NA1+Aq$ . (29
q

low, ¢, is defined differently for scaling exponenidbelow
and above a value., which denotes the crossover to mean-

field-like behavior: I1l. THREAD LIMIT RESULTS

N > In the dilute to semidilute concentration region, the thread

- for p<p == PRISM result forh, adopts the RPA-like form, Eq29),

c d . .
o & (24) where the interaction paramet@rneeds to be found from
O 1 Eq. (26). The total structure factor then also has simple RPA-
Nod for v>uwe. like form:
g

Equations(21)—(24) specify the thread PRISM limit. Note S;=N wq_ , (30)
that the divergent number density, actually corresponds to 1+Awyg

a vanishing polymer volume fractio# and thus(semiy di-

lute polymer solutions are studied as claimed: where generallyn, differs from the Gaussian form and the

integrated intermolecular interaction strength,in general,

NI for  p<yp, differs from the simple RPA approximatio_mocNQRd. Be-
¢, =0, 0% (25)  cause of the large wave-vector behavioregf Eq. (28), the
IN for v>uve, limit R—0 affects the integral in Eq26) differently for v
<w.=2/d or v>v.. In the first case, the integral converges
where $=0O(1) corresponds to polymer melts. uniformly, and integration and limit can be interchanged,

The solution of the nonlinear PRISM integral equations in
the general case, of course, demands to fi{a) from Eq.
(20) for all x. However, a solution to Eq$12)—(15) depend- — ] )
ing on f.(0) can be constructed on large distancesR,s,  f<(dR), and leads to RPA or mean-field behavior.
or, equivalently in the thread limit, for finite distances,
>0. This holds, because in the limit &—0, the excluded A. Below the mean-field crossover

volume condition Eq(12) affects a pointof measure zejo In the thread equation for the interaction parameéteEq.
only, and thush, can be obtained from the Fourier integral (26), the limit R—0 can be performed trivially for< v,

of g(r) outside the core>0. From the inverse transforma- =2/d, andA becomes a function ab/g, only, where the
tion and Eqgs(13) and(20), the contact value follows in the . qssover densitp, =NQ4/(27¢,)° ent*ers:

general case wheiR denotes a vector of lengtR+:

thus onlyf_c(0)=1 enters. In the second case, the integral
converges only because of the wave-vector dependence of

olo, J'w x4 1@2(x)
1 NA [ di Jar fo(qRY2 - (1790 =2~ = |, T amm) (31)
e 7 (2m) 1+Af(aR)wq For size-mass scaling exponentsorresponding to fractal

_ dimensionsd-=1/v, equal to or exceeding the spatial di-
The normalized functions wg=we/N and f¢(x) mension, i.e., forr<l/d, the intramolecular structure on
=f.(x)/f;(0) have been introduced, and the long wave-long length scales determines the thread B{). There,
length interaction parametek, which abbreviates the zero screening of the intramolecular excluded volume has been

wave-vector limit of the direct-correlation function: neglected in the present approach, and the polymer segrega-
tion effect predicted in the thread limit requires use of the
A=—Npgcq-o= NogyR%f(0). (27)  self-consistent PRISM approa¢h5]. In order to avoid this

complication, the exponemtwill be restricted in the follow-
For (semiy dilute solutions, the limit Eq(21) simplifies the  ing, »>1/d. From the two limits of the integral in E¢31),
PRISM integral equations, because the core condition, Egonstant forA<1 andA~ @~ *® for A>1, the scaling form
(12), becomes irrelevant, and E(®6) assures that the con- for the thread parameter can be determined:
nection Eq(19) is satisfied. The two further conditions, Eqs.
(22) and (23), assure that nontrivial solutions describing an A=(plo,)falol0,),
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' ' T can be expected to be model dependent. From Fig. 1 one
£ J J/ // ‘: notices that the connection of the contact value to the small
A S FE }/Ifw wave-vector interaction parameter, EQ7), already holds
’ i for values ofN where the asymptotit,, Eq.(32), is not yet
A /;¢ 5P reached. Differences appear for larger packing fractions and
LE 8 / indicate concentrated or meltlike polymer packing.
100 | /{ //,é’ % / The pair-correlation functiog(r) in the thread limit can
R be obtained for finite segment distances from the Fourier
TN pad /// transform of Eq.(29). For dilute densitiesp<g, and thus
512 M‘/,ﬂ y's A<1, it differs from the ideal gas limig(r)= 1, because of
2048 /'://‘/ two molecule interactions. In the semidilute concentration
o e region, ¢>¢, and A>1, the replacemenf=(&./£,)""
shows thag(r) depends on the two length scalésand¢,
independently. On length scales large compared to the mesh
7 sizer>§,, the intermolecular structure factor exhibits the
well-known correlation holg1,9,10,13, which asymptoti-
cally for o> p, exactly cancels off the long-ranged intramo-
lecular correlations:

cle. 10
FIG. 1. Scaling functionf(c/c,) (bold solid curve of the
thread interaction parametArversus rescale@noleculaj polymer
concentration in double logarithmic presentation for the Flory ex- N
ponent, 1»=1.67; c*:1/(2772§§) is the molecular overlap con- hq—>— —w(qé) for q< 1/§p; o>o, . (35)
centration. The curves labeled with degree of polymerizaticare e
results from microscopic PRISM calculations of the model de-__ . . . . .
scribed in the text, wheré.=0.28N"¢ is found with Eq.(28). Full T_h's result is equivalent t6q<“’q f0r_q§p<1 in the semi-
symbols givef, determined fromS,_,o, and open symbols from dilute range[1]. Note that the self-5|mllf'1r structure P1f/ the
the contact valueyy shifted by model-dependent factof8.088, ~Molecule leads to the power-law behavigngec —(oq) ™"

0.086, 0.085, and 0.085 with increasiNg. for 1/¢.<q<1/§,, which is equivalent to a power-law varia-
tion in the pair-correlation function:g(r)—21oc(—1/
where 0)(alr)d Y for ¢,<r<&; [15]. For larger distances,
> ¢, Eq. (35) describes hovwg(r) decays exponentially to
const-O(x) for x—0 its random mixing value unity.
fa(x) K201 for  Y_yo0. (32) Within the mesh size, i.e., for distances around and

smaller than the density screening length, the intermolecular
In Eq. (32, the contact value correction was already ne-correlations do not depend on the molecular size anih
glected, as it is of higher order, as can be deduced from Ed5d. (29) can be replaced by its largg. asymptote from Eq.
(27). Actually, a scaling law follows from Eq$27) and(32)  (28). This leads to
for the contact value: —
_C§p

d hq— v 2lv
C(&:’\i?) fa(0lo.). 33 4 (aé) "+ (aé))

for 1/£.<q; o>p,, (36)

9d=
where the limiting behaviors ofi, for q§, large or small

where the identical scaling functidn, from Eq.(32) enters. compared to unity can be read of immediately aad
The numerical prefactar, of course, depends on the micro- =N/(@A£S) approaches a numberc:6.26.., for »
scopic details of the polymer model. Note that for v, the ~ =3/5). Note that Eq(34) for the density screening length
contact value vanishes likg~ (>~ "9 for N—c in the dilute ~ ensures a smooth crossover of Eg6) to Eq. (35) in the
case. The scaling functiof, also determines the density correlation hole region. The variation of the pair-correlation
dependence of the mesh size or density screening length; &#ction, which describes the mesh structurerferé;, can
for large reduced densitieg> g, , the width of the total thus be obtained in closed form, if the neglect of the cutoff of
structure factor can be estimated fro®,=(N/A)/(1  the correlation hole at={; included in Eq.(35), is kept in

+(q§p)1/”), for &> 1, which leads to mind. Forr<&:, g(r) depends om/&, only, with
_ _ d
£,=c'o(ea® M4, (34 _ _—f 9 oivre, L
g(r)_l c (277)(18 pylv+y v

For a given model of the intramolecular structure factor,

the thread equation, E¢B1) with g4=0, allows one to deter- (r1&,)?"q, r<g§,, r>oR
mine f 5 straightforwardly. Figure 1 shows the result for the - 1—(&,IN W r>g 0 r<g

. _ N 2v p ' P ¢’
polymer model: wq—(llN)Eaﬁﬁzlexp—(q2?/6)|a—,8| ,
with the exponent given by the Flory approximatios3/5  wherec ensuresg(0)=0 in agreement with Eq(31) and
corresponding to good polymer solutioft,2]. Numerical — constant prefactors of order unity have been suppressed in
solutions of the microscopic PRISM Eqd.2)—(15) for this  the final two lines. For polymer chains in good solvents, the
model and for not too large degrees of polymerizatigrstill ~ smooth increaseg(r<gp)oc(rlgp)m, by accident agrees
exhibit rather large corrections to the thread asymptote. Thisiith the estimate from Ref{21], g(r<§p)o<(r/§p)(7*1)’”

(37
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~(r/&,)*3, wherey is associated with the entropy of a single g(r)=— (a/r)@ 2" for r<&,. This results from the neglect
polymer chairf{ 2]. The depth of the correlation hole displays of the wave-vector variation of the direct-correlation func-
an intriguing dependence on the fractal and spatial dimention, Eq. (20), and reinforces that the validity of the thread
sionalities. The probability to find a segment of another poly-g(r) is restricted tor>o for v>wv., whereg(r) is still
mer within the considered molecule decreases strongly ipositive, as it must be by definition.

1/v—d. From Eg. (37) one estimatesg(r~§¢.)—1«

—1/N¥®"1 which becomes a number of order unity in the IV. DISCUSSION AND COMPARISON

casev=1/d. The smooth variation of(r) at short distances WITH OTHER APPROACHES

explains why the scaling of the correct contact vajye Eq.

(33), with macroscopic variables can be estimated from the In this paper, scaling limits appropriate for the dilute to
thread solution, Eq:37), by g4>g(o); its dependence on the semidilute concentration regime of macromolecular solutions
ratio of the microscopic length scalegR, however, cannot have been derived starting from the microscopic PRISM in-

generally be recovered in this wgy6]. Note that Eqs(34)—  tegral e_quations. RPA-like expressions for the tota! density
(37) asymptotically apply for semidilute solutiong> g, , fluctuations, the_: structure fact(S‘q, Eq. (_30), were given,
whereas Eq(29), (30), and(32) describe the full dilute-to- Where the density scaling of the interaction paramateras
semidilute crossover region. deduced from the local excluded volume constraint,(EB).

The thread interaction parameter is connected to the more
familiar excluded volume parameterv via A
. =(NaMe/M2)v, whereN, is Avogadro’s numben is the

The condition Eq.(26) for the contact valuegy, Or  gjecular weight, and, is the monomer weight. Effective
equivalently, for the thread paramet&rbecomes indepen- density-dependent excluded volume parametés) have
dent of the microscopic interaction details only fex v . often been used in connection with RPA expressi@21],
Above the crossover exponent> v.=2/d, the integral over 54 Eq.(32) justifies this.
the effective potential as it entefg, is determined by the  The crossover of the single chain correlations to Gaussian
local structure info(qR). In the thread limit, Eq(26) be- |5rge_distance behavior far>¢, due to intramolecular ex-
comes a linear, density-independent equatiorgfowith so-  ¢yded volume has been neglected and would affect the

B. The mean-field cases

lution: model forw,, Eq. (5), and, consequently, the thread results
ddq for large distances. Use of self-consistent PRIEN] to
gdzl/ 1+f—deiq'R(q0)2/Vfc(qR)} incorporate this would be required, but E@2) for the
(2mIR) 38) thread parameteA indicates that no change of its density

scaling can be expected.

Thus, a finite density-independent contact value follows in__ The crossover densitg, , Eq.(24), arises from the full
the mean-fieldlike cases™v. Obviously, its exact value MICroscopic PRISM equations as the relevant low-density
depends on the solution of the PRISM equations considerin@cale* and importantly, the qualitatively different definitions
all microscopic details and is beyond the reach of the threal! the mean fieldy>w.=2/d, and in the nontrivial cases,
PRISM approach. The interaction paramefethus shows »<Vc, are recovered. Whereas for<p the molecular
the density scaling as expected within RPA. The reduced0SSOver densit, = ¢, /N, is defined in terms of the mo-
densityo/o, appears, withp, =1/(Na¢), andA becomes, lecular size only,c, «<1/Ry for v>v.; in the mean-field
with an unknown numerical constaBt which, however, €ases also a microscopic length, the segmental hard-core di-
may depend on the ratio/R of the microscopic length ameterR, entersc, o< 1/(RF"R*~?") for v>wv. This indi-
scales: cates that intermolecular steric interactions become impor-
tant as soon as the macromolecules fill spaceifarv,,
A=Tolo, . (39  whereas for the more open molecules; v, much higher

- . . , densities are required.
In the semidilute density regime, the width of the total struc-  Fqo¢ chain polymers, the upper critical dimension, which

ture factor again delt/ermmes the density screening lengthyeparates mean-field and fluctuation-dominated structures,
Sq=(N/A)/(1+(q&,)™) for géc>1, with the result agrees with the renormalization-group resutts=2/v.=4
= dy—» [1,2]. For rod polymersy=1>v., the mean-field-like be-

&=t olea) " 40 havior underlies the successfuICOnsager theory of the nem-
Again, the numerical prefact@’ depends on the polymer atic transition[22] and is generally argued to be tri23].
model. The result, Eq(35), discussed for the intermolecular Note that in the studied PRISM theory orientational, “nem-
structure in the correlation hole region holds. The mesttic” interactions are not treated correcfl$0], and thus a
structure factoh(q>1/£.), however, shows a different den- nematic transition for rods is missed. Very recently, PRISM

sity scaling: has been generalized to treat oriented polymer fluids and the
isotropic-nematic liquid crystal transitioi24]. As the (iso-
—éad(fp/o)Z’V tropic) crossover densitg, for rods is of the order of the
hg— (@€, 7+ (qé,) 7" for 1/¢.<q (4D nematic transition densii22], a suppression of nematic or-

der is required to study the described isotropic semidilute rod
that again, with Eq(40), leads to a smooth crossover for solutions experimentally. Networks of stiff semiflexible mol-
intermediate distances, &<q<1/£,, but to a small dis- ecules like actin may provide good syste[as].
tance divergence of the thread pair-correlation function, Of course, the full PRISM integral equations, which have
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been introduced to study dense polymer systems with short- In agreement with the thread PRISM result, a scaling law
ranged meltlike correlation§9], incorporate wave-vector- is postulated in Refl4] for the intermolecular structure fac-
dependent corrections in, e.g., the effective interactipn  tor inside the coil radiush(q> 1/Rg)zﬁ(q§p), which leads
see Eq(14), when 16 approaches local length scales. to the predictionh,cg®~® for g— [4]. As a scaling law
From the Compressibility, which is connected to the Z€I0can 0n|y hold for distances |arge Compared to the micro-

wave-vector limit of the total structure factor, the equation ofscopic length scalesyo<1, this result can be compared with
state can be obtained, wheredenotes the osmotic pressure the thread scaling power |amqocqu/ygd—2/u in Eq. (36)
P ’ ’

[19,10: and again differs. Within thread PRISM the behaviorhgf
arises naturally as it matches smoothly to the microscopic
II 1 1 (e Al limit, hq~gdq‘dcoqu for gR>1, because the contact
Qk_BT:N+E o do'—\— value vanishes asymptoticallggye(a/£,)?*~¢ for ¢,>0.

This supports the expectation ia1]. Computer simulations
1 could address this question for polymer chain solutions as
Nt O(ele,)], e<es shown in Sec. IVC, where corrections to the low-density
scaling law, Eq(33), need to be considered, which will arise
(o due to finite packing fractions.
o9, e>0,, v>v, Accepting the existence of a scaling law for the contact
(42) value of macromolecules in solutions, E§3) can be used
to connect the PRISM results to field-theoretic calculations

L i ~ for two-polymer systems.
when A is given by Eq.(32). The non-mean-field behavior

for v<p, for semidilute concentratiorj45] agrees with the
exact Des Cloizeaux resyl], and the second virial coeffi- _ _ . _ _
cient, 1/G\|Q*)°<RS/N2, recovers the picture of dilute poly- Field-theoretic calculations, which employ th_e mapping
mer coils interacting like hard spheres of radRis[17], but ~ Of the polymer problem onto the ©¢~0) magnetic model,
it does not vanish for dilut® solvents, i.e., fow=1 in the lead to numerous single-chain results and have recently been
present approach. PRISM theory apparently correctly Capextended to provide information about the intermolecular
tures the leading asymptotic behaviors, the free molecul§tructure factor on Shf’drt length scalds5]. In [4], the men-
limit TI=(e/N)kgT for o<g,, and theN-independent tioned behaviorhy>q™® for g—o is recovered from the
power law foro>p, , but the next to leading terms are not field-theoretic calculation and used to support the scaling
described correctly* i’n general. picture discussed in the previous section. The implications
The structure of the polymer mesh in semidilute solutionsfor 9(r) can be compared with another field-theoretic calcu-
i.e., the intermolecular structure factog on length scales of 'ation, which studies the number of intersections of two
the order of the density screening lengih has not been polymer chaind5]. Let 2,(R,) be the number of intersec-
conclusively discussed from first principles calculations. Thions of two re_md(')n(or self-avoiding walks whose end-to-
thread PRISM results for the non-mean-field-like case ofnd distance iRe:
polymer chains in good solvents give explicit results, Egs.

d) 1vd—1

B. Comparison with field-theoretic calculations

N

; 35(Re)
(36) and (37), which can be compared to results from other 22 SrA_rMW_R ) s(r@—Myy
approaches. V(4ma?) T2 a,ﬁ:1< (rg"=ro "= Re)olra"=rp7)
(43
A. Comparison with scaling considerations For intermediate distance®,, 0<R.<Ry, where the two

Detailed scaling law considerations &f, in the limit ~ Polymers overlap but local effects do not dominatg, the
qR,>1 have been presented[i#] and can be directly com- scaling Ezm(U/Rg)‘””( ) is predicted, where the two-
pared with Eq.(36). The limit, hy¢3 for 1/Ry<q<1/g, ~ molecule correction to scaling expones, appearss]. The
strongly differs from the correlation hole behavigh,=  contact value can now be obtained fraip by integrating
—(qo) ¥ with o the Kuhn’sche-segment size, predicted by©Ver all possible distances afiivial) factors of normaliza-
the thread PRISM theory for this wave-vector window. fion, as can be seen from Ed41), (16), and(21).
Physically, the long-ranged variation bf, arises from the

25(Re)
rearrangement of the polymer mesh around a molecule on :f d9R 2 e (44)
distances up to the molecule’s size. This adjustment compen- Ja *(4ma?)TN?

sates for the excess density due to the considered molecule, . )
leading to the small total density fluctuations expected folJSing the results for two polymers froii] to obtain the
concentrated systems. The correlation hole has been préc@ling of the contact value in the dilute case, one finds

dicted and discussed for polymer melts], but PRISM d— wyP)
theory also predicts it for semidilute solutiof8], in agree- RG,, Rg for 0 (45)
ment with scaling considerations i@1] but in disagreement 9u N2 e—u

with the mentioned scaling picture presented4h Intrigu-

ingly, PRISM theory, Eq.(37), recovers the tendency of The thread PRISM result, E¢32), differs from this, in gen-
macromolecules to segregate fer1/d as discussed for eral, because in PRISM theory the correction to scaling ex-
ideal chains in two dimensiorf4]. ponent is approximated t@'5*%%=0. Its value in quadratic
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. FIG'_ 2. Intermolecular structure factong from a Monie Carlo FIG. 3. Pair-correlation functiong(r) versus rescaled distance
simulation of the BFM for polymers of lengti=2048 (¢, =94 for r/¢, of the BFM for the two densities;/c, = 25.6 (thin solid line,

v=0.588; all lengths given in units of the lattice constant of the , _ ; ; _
BFM). The data are taken frofi27] and are shown scaled witf), & 31'1.) andc/c, =97.7 (thin dashed line¢, 14.'0) from[27].

" : \ . , The choice of, collapses the curves gt=0.747. Circles mark the
determined from the correspondigr)’s of Fig. 3. The+'s be-  coniacy valuegy. The asymptotic thread PRISM prediction, Eq.

long to the rescaled density/c, =25.6 and thex’s belong to 34 (thick solid line, and shifted according to a finite segment size
c/c, =97.7. The asymptotic thread PRISM result, E2p), shifted (thin dot-dashed curjeare shown. A smallr asymptote,g

by a correction factor 0.25 is shown as a solid line, whereas the:0 99 (r —0.85%R)/¢,1°8 according to Eq(47) is indicated by a
P +3.80 ; : : p
dashed line indicates a power law **" following from Eq. (47). long dashed curve, wheR=2 in units of the lattice constant is the
Vertical bars mark wherg=1. excluded volume segment diameter of the BFM, and a linear
. . . asymptote is given by a dotted line. The vertical bar denétés,
order ing=4—d is known, and the value appropriate for or the |ower density. The inset enlarges the smattgion showing

p01|ymelr9 cyains in good solvents turns out to ®@G)  the shifted thread PRISM, the power law, and the linear curves with
=38—g48°+---~0.40 [5]. It can be compared to the the same line types as in the main part.

PRISM and to the mean-field approximatiomy, =d
—2/v, which qualitatively differs because it is negative. The
thread approximatione,=0, is correct at and above the
upper critical dimensioml,; . . :
It appears difficult to envisage simple formsg(fr) that . A clearer p|qture of the polym_er mesh s_tructure IS pro-
reconcile the predictioﬂnqocq‘d for q—so [4] with the re- vided by the pair-correlation ]‘unctlcg(r) that is the Fouﬂer
sults for,, [5], and the dilute limit of thread PRISM theory transform of_hq_and asymptotically should fqllow E@7) in
qualitatively agrees with the latter. the thread limit,o,R<¢, and § ,<£.*Ry. F|gur¢ 3 shows
the twog(r) for the above parameters, whefg is defined
by collapsing the simulation data onto the master curve at
g(r=¢,)=0.747. Note that this is an unfamiliar definition of
Monte Carlo simulations are well suited to study the in-¢,, which gives valuegtheoretically proportional to the
termolecular structure of polymer solutions but face the dif-standard ones. These valueségfalso produce the collapse
ficult challenge to achieve a clear separation of the threef the h, onto a common curve shown in the inset of Fig. 3
length scales, segment size(or excluded volume siz®),  and lead to a reasonable collapse of the pair-correlation func-
density screening length,, and molecular siz&; (or mo-  tions onto a common master curve. Finite-size corrections
lecular correlation lengthé.); see the discussion if6]. enter from short distances because of the finite excluded vol-
Whereas ir{6] in the range Ry<q<1/{, a discrimination  ume segment sizeR/¢,. These corrections can also be un-
of the two predictions,hqxconst. from scaling consider- derstood as finite packing fraction corrections. Large-
ations [4] and hyq™* with x~1/v (as follows from the distance deviations from a common curve appear because of
PRISM treatment of the correlation hpleappears possible the finite chain sizeg./¢,. Nevertheless, the short-distance
and appears to support the latter; no clear conclusions abobthavior ofg(r) provides a sensitive test of the various pre-
the exponent in the asymptotic behavibg—q " for 1/,  dictions. The predictiorhq—>1/qd would correspond to a
<(q<1/R, with x=d=3 (scaling picturg x=4 (RPA), or  logarithmic variation ofg(r—0), which appears to be ruled
x=2/v~3.34 (thread PRISN| were possible. Even recent out by the data. Also the thread PRISM predictia{r
large-scale simulations of the bond fluctuation ma@#M)  —0)«r¥3 appears incompatible with the data, even if finite
[25,26 do not provide a conclusive test of the largede-  segment-size corrections are approximated by a shift of the
pendence ih, is considered27]. Figure 2 shows data from origin. The RPA prediction for Gaussian polymeigr
Ref. [27] for semidilute solutions and rather large chain —0)—g4xr, of a linear increase in, can describe the data
lengths, N=2048, whereé =94, {,=14 for c/c, =97.7,  over small intervalglike 0.1<g<0.25) but fails to account
and§,=31.1 forc/c, =25.6, and the steric segment size is for the slight curvature of especially the lower density curve.
R=2 in units of the lattice constant of the BFM. For a fit, the Moreover, the contact value of the RPA cannot be expected

asymptotic thread PRISM prediction, E§6), is shifted by a
factor indicating that nonasymptotic correctionsct@annot
be neglected.

C. Comparison with Monte Carlo simulations
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to vanish asymptotically if parameters appropriate for a fit topressions. The density dependence of the excluded volume
h, are used. An increase in the range of a power-law fit tqparameter is derived from a microscopic incorporation of
g(r) at the lower density up to an interval &<0.42 is  intermolecular excluded volume and intramolecular connec-
possible if the following assumption about the pair- tivity. Various comparisons with rigorous field-theoretic cal-
correlation function for semidilute solutions is made: culations show that leading asymptotic predictions, even for
n non-mean-field-like situations, are captured correctly in the
g(r)—g(r/¢,) for §,—», §,/§—0,  (46)  PRISM integral approach. The correction to scaling expo-

_ 2= d+ wAP) nent, which appears in the molecular mass dependence of the
g(x<1)ox R (47)  contact value of two polymers, provides a typical example

where for dilute cases the same power law with the replacewhere thread PRISM provides a much better description than

ment£,—¢. can be expected from scaling considerations mean-field theory but fails to describe all nontrivial correla-
T Sp T5C P . 9 tions. PRISM theory suggests useful concepts like the pair-
This power law would match the scaling law fofr) for r . ) . ) .

L correlation functiong(r) and predicts scalings laws, which
—0 smoothly to the calculated vanishing contact vaiye ; . . .

L2 . provide a framework for the interpretation of data, if the

from Eq. (45). Note that such a matching is predicted by exponents are corrected. Thread PRISM thus turns out rather
PRISM. In Eq.(47), however, the exponent is corrected be- P '

cause the correction to scaling exponeni(P) is taken into useful for semidilute solutions, where it explicitly describes
) Ing exponei . the intermolecular correlations of the polymer mesh and re-
account. According to scaling argumen&28], there is a

: ) sults from more rigorous approaches are scarce. Moreover,
term of the form of Eq(47) present in the intramolecular as PRISM theory is successful for polymer melts, it provides

correlations also, although it is masked by chain-end effectﬁqe unique possibility to approach polymer systems at all

there. i
The expected power law for good solutioms: r % for densities.

r<¢, with v=0.588 andw=0.40[1,2,5|, is compatible with
the simulation data, if a finite shift owing to a finite segment ACKNOWLEDGMENTS
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