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Intermolecular structure factors of macromolecules in solution: Integral equation results
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The intermolecular structure of semidilute polymer solutions is studied theoretically. The low-density limit
of a generalized Ornstein–Zernicke integral equation approach to polymeric liquids is considered. Scaling laws
for the dilute-to-semidilute crossover of the random-phase approximation~RPA!-like structure are derived for
the intermolecular structure factor on large distances when intermolecular excluded volume is incorporated at
the microscopic level. This leads to a nonlinear equation for the excluded volume interaction parameter. For
macromolecular size-mass scaling exponentsn above a spatial-dimension dependent value,nc52/d, mean-
field-like density scaling is recovered, but forn,nc the density scaling becomes nontrivial in agreement with
field-theoretic results and justifying phenomenological extensions of the RPA. The structure of the polymer
mesh in semidilute solutions is discussed in detail and comparisons with large-scale Monte Carlo simulations
are added. Finally, a possibility to determine the correction to scaling exponentv12 is suggested.
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PACS number~s!: 61.25.Hq, 61.12.Ex, 61.20.Ja
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I. INTRODUCTION

Whereas the conformational statistics of a single flexi
polymer chain in dilute and semidilute solutions are und
stood rather well, less is known about the intermolecu
packing. It is well understood that a semidilute polyme
solution builds up a temporary mesh with a mesh size,
density screening lengthjr , which for macromolecular so
lutions can become large compared to the length scales c
acterizing the individual monomers@1,2#. However, the in-
termolecular packing, inside the mesh but still on leng
scales large compared to the chemistry-dependent l
length scales, is as yet unclear. It has been the focus of re
neutron scattering experiments@3,4#, scaling considerations
and field-theoretic calculations@4,5#, and of computer simu-
lations @6#. Older theories for the intermolecular structur
which either used the random-phase approximation~RPA!
@7# or the assumption of Gaussian intermolecular correlati
@8#, failed to incorporate the non-mean-field-like correlatio
on scalejr of semidilute polymer solutions. The recent fiel
theoretic results lead to contradicting results as will
pointed out and resolved in this paper.

Integral equation theories for simple liquids directly a
dress the problem of interparticle packing in dense flui
Starting with the work of Schweizer and Curro@9#, this ap-
proach has successfully been extended to macromolec
liquids. The polymer reference interaction site mod
~PRISM! integral equations have been fruitfully applied
describeinter alia the intermolecule correlations in dens
homopolymer systems, polymer blends, and block copo
mer melts@10#. PRISM is a macromolecular generalizatio
of the reference interaction site model theory of small m
ecules of Chandler and Andersen@11,12#. The low-density
limit of PRISM theory shall be worked out in detail in th
paper in order to discuss the density correlations on the m
size length scale. This paper either extends@13–15#, or
complements@16,17# previous studies.

It is a priori not related to nor required for the success
PRE 601063-651X/99/60~2!/1921~9!/$15.00
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the PRISM approach to polymer melts whether it also c
rectly captures the long-ranged correlations of semidil
polymer solutions. As liquid correlations in melts genera
are short-ranged, an approach like PRISM appropriate
dense systems need not be a useful approach to~semi! dilute
solutions, where long-ranged correlations are of inter
Nevertheless, the simplification of the PRISM equations
low polymer densities worked out here will be argued
provide a useful description of the intermolecular corre
tions building up the polymer mesh in polymer solutio
@10,13,14#. Criteria for the quality of the approach will b
established from comparisons with simulations, field theo
and mean-field results.

The aspect of screening of the intramolecular exclud
volume shall be neglected in this paper. It would require
use of self-consistent PRISM theory, which is considera
more demanding@10#. Moreover, the errors made, when n
glecting the crossover to Gaussian intramolecular corr
tions on length scales large compared to the density scr
ing length jr , will not affect the scalings of the
intermolecular correlations for distances smaller thanjr ,
which are the main focus of this paper. Thus, in the follo
ing the intramolecular correlations shall be characterized
a density-independent polymer structure factorvq , which,
for macromolecules ofN segments at the positionsra , is
defined as follows:

vq5
1

N (
a,b51

N

^eiq•(ra2rb)&. ~1!

Its full functional form will not be required. Knowledge o
its variation for small, large, and intermediate wave vect
suffices@1,2#.

For small wave vectors, the number of scattering un
the index of polymerizationN, whereN@1 for macromol-
ecules, and the global molecular size, the radius of gyra
Rg , can be obtained from a scattering experiment measu
vq :
1921 © 1999 The American Physical Society
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vq˜NS 12
1

d
q2Rg

21¯ D for qRg!1, ~2!

whered is the spatial dimension. In an intermediate wav
vector range, the macromolecule is supposed to be s
similar. This leads to a power-law behavior invq determined
by the fractal dimension,dF51/n:

vq˜
1

~qs!1/n for 1/Rg!q!1/s. ~3!

The fractal exponentn also determines the size-mass scalin
Rg}sNn, where a smooth crossover from Eq.~2! to Eq. ~3!
is assumed aroundqRg'1. The assumption of an intermed
ate self-similar molecular structure rules out the study
compact macromolecules, e.g., hard-spherelike colloids,
is appropriate for polymer chains in good,n50.588..., orQ
solvents,n5 1

2 , or for rodsn51, which share some prope
ties with semiflexible polymer molecules like actin or DN
@2,1,18#. The Kuhn’sche-segment sizes in Eq. ~3! is of the
order of local polymer-specific length scales where mic
scopic segmental packing effects influence the complica
structure ofvq . This chemistry-dependent variation ofvq
aroundqs'1 can be included in PRISM studies@10#, but
shall be neglected here. Only the self-scattering contribut
a5b in Eq. ~1!, which is the only remaining contribution fo
large wave vectors,qs@1, is universal and needs to be co
sidered:

vq˜1 for qs@1. ~4!

Thus, a generic smooth crossover from the point part
self-scattering term, Eq.~4!, to the self similar intramolecula
correlations, Eq.~3!, will be assumed. Chemistry-depende
local packing will show up in all correlation functions o
microscopic length scales but will not, except for in prefa
tors, affect the intermolecular structure on global leng
scales like the molecule sizeRg or the mesh widthjr , as
will be shown explicitly.

In order to characterize the total, including the interm
lecular, density correlations of an interacting polymer s
tem, further correlation functions need to be introduced.
order to compare them with results from other approache
is useful to recall their definition as used in PRISM theo
@10,19#. To be specific, let us considern polymers withN
scattering units in ad-dimensional volumeV, where in the
thermodynamic limit the number density of segments,%
5nN/V, is kept fixed, i.e.,n,V˜` with %5const. The lo-
cal, fluctuating density is

%~r ,t !5(
i 51

n

(
a51

N

d„r2ra
( i )~ t !…, ~5!

with equilibrium averagê%(r ,t)&5%. The spatial compo-
nents of the density fluctuations shall be denoted by%q ,
where

%q5E ddr eiq–r %~r !5(
i 51

n

(
a51

N

eiq–ra
( i )

. ~6!
-
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Their statistical average vanishes except for zero wave v
tor, ^%q&5%dq,0 .

The total structure factorSq as measured, for example, b
coherent neutron scattering@2,19# is given by the second
moment of the wave-vector-dependent density fluctuatio
from Eq. ~6!:

Sq5
1

nN
^%q* %q&2nNdq,0

5
1

nN (
i , j 51

n

(
a,b51

N

^eiq– (ra
( i )

2rb
( j ))&2nNdq,0 . ~7!

The total density fluctuations are straightforwardly separa
into density fluctuations on the identical polymervq, the
intramolecular structure factor, and on different polyme
hq , the intermolecular structure factor.

Sq5vq1% hq , ~8!

where the intramolecular part has already been defined in
~1! above. The intermolecular structure factorhq describes
the packing of different molecules and is given by the
stricted sumiÞ j :

hq5
V

n2N2 (
i , j 51,iÞ j

n

(
a,b51

N

^eiq– (ra
( i )

2rb
( j ))&2Vdq,0 . ~9!

The intermolecular structure factor is the Fourier transfo
of the intermolecular pair correlation functiong(r ):

hq5E ddreiq•r@g~r !21#. ~10!

The pair-correlation function describes the probability av
aged over all segments of finding at a distancer from sitea
on moleculei , another segmentb of a different moleculej .
From Eqs.~9! and ~10!, one obtains

g~r !5
V

n2N2 (
i , j 51;iÞ j

(
a,b51

N

^d„r2~ra
( i )2rb

( j )!…&. ~11!

g(r ) is non-negative and approaches unity for large sep
tions r , because then statistical correlations between the s
at ra

( i ) and rb
( j ) have vanished@19#.

Implicit in the Eqs.~7!–~11! is a neglect of a special sit
dependence of the density fluctuations as it might, for
ample, arise from chain-end effects for linear polymers@9#.
Star polymers, where sites in the core region possibly ex
rience very different local-density fluctuations than sites
the star arms, also would require a more elaborate treatm
@10#. Nevertheless, for arbitrary macromolecular archite
tures, the above-defined correlation functions are experim
tally measurable, at least in principle, and can also be de
mined from computer simulations. They contain informati
about the local liquid structure and remain meaningful in
whole accessible density range, from dilute solutions
melts.
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II. PRISM INTEGRAL EQUATIONS

Whereas the effects of the excluded volume on the
tramolecular structure, like swelling, are already taken i
account in Eq.~1!, PRISM theory@9,10# explicitly enforces
intermolecular excluded volume by requiring the pair cor
lation function to vanish for distances smaller than the s
ment sizeR.

g~r !50 for r ,R. ~12!

Building upon the Ornstein-Zernicke approach so succes
for simple liquids @19#, an averaged molecular site-si
Ornstein-Zernicke-like equation@11,12# is formulated and
can be viewed as definition of an effective potential, t
direct correlation functioncq :

hq5vqcq~vq1%hq!. ~13!

Equations~8! and ~13! can also be brought into a RPA-lik
form, which supports the interpretation of the direct corre
tion function as an effective potential.

Sq
215vq

212%cq . ~14!

Different from the RPA approach,cq is not considered to be
given, but needs to be found from a solution of the nonlin
integral equations. Besides Eqs.~12!–~14!, a further equa-
tion, the ‘‘closure’’ approximation, is required to determin
the solution. The most simple and yet appropriate closur
treat the intermolecular steric repulsion is the Percus–Yev
~PY! approximation, which expresses the expectation t
the effective potential is short-ranged:

c~r !50 for r .R. ~15!

Note that the interaction described byc(r ) is localized on
microscopic length scales. Thus, the PRISM equations
scribe the interplay of local intermolecular steric interactio
and long-ranged intramolecular correlations due to mac
molecular connectivity@9,10#.

Thread limit for (semi-) dilute solutions.In the simplified
non-self-consistent PRISM approach, the intramolecu
structurevq , from Eq. ~1!, is assumed to be given, an
~mostly numerical! techniques to solve the integral equ
tions, Eqs.~12!–~15! are employed@10#. Note that for a Pade
approximation tovq for Gaussian chains withn5 1

2 in d
53 an analytic solution of the PRISM equations on
length scales exists@16#. The solution technique employin
the Wiener-Hopf factorization as pioneered by Baxter@20#
can straightforwardly be extended to Gaussian chains
~low! odd dimensions,d55,7,..., but asimpler approach can
also be used in order to study the low-density results
PRISM theory analytically. For the mentioned case,n5 1

2 in
d53, this was first used in@13,14#, explicitly justified in
@16#, and without proof extended to exponentsn within the
bounds 1/d<n,2/d in @15#. Here, general arguments on th
solutions of Eqs.~12!–~15! allow us to find the low-density
limits in the more general case 1/d,n andd>2.

The special low-density limit, called the ‘‘thread PRISM
model @13,14#, studied in the following assumes that pol
mer solutions can be modeled as a low-density limit of
one-component PRISM equations for polymer melts. Spe
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solvent effects are assumed to be taken into account via
model for the intramolecular structure, Eqs.~2!–~4!.

In general, the excluded volume constraint, Eq.~12!, and
the PY closure, Eq.~15!, lead to a discontinuity in the pair
correlation functiong(r ) and in the direct-correlation func
tion c(r ) at contact:

gdªg~r↘R!.0,
~16!

c~R2 !ªc~r↗R!Þ0.

Note that the actual values ofgd andc(R2) will be depen-
dent on details of the monomer chemistry, as the segm
size R obviously is a microscopic length. To connect bo
quantities it is useful to expresshq and cq as one-
dimensional Fourier transforms,

hq5E dr eiqr j ~r !,

~17!

cq5E dr eiqr i ~r !,

with the symmetric functions,

j ~r !5Vd21E
ur u

`

ds s„g~s!21…~s22r 2!~d23!/2,

~18!

i ~r !5Q~R2ur u!Vd21E
ur u

R

ds s c~s!~s22r 2!~d23!/2,

where Vd52pd/2/G(d/2) denotes the surface of th
d-dimensional unit sphere. Because of Eqs.~12! and ~15!,
i (r ) can be nonsmooth forur u<R only, while this can hap-
pen for j (r ) for ur u>R. Thus, using the large wave-vecto
limits, hq}2gd cosqR/qd21 for q˜` and similarly forcq ,
and the large wave-vector asymptote ofvq , see Eq.~4!, Eq.
~13! connects the discontinuities ofg(r ) and c(r ) at r 5R,
leading to

gd52c~R2 !. ~19!

Moreover, one concludes thatc(r ) is finite. Thus, the scaling
of the Fourier transform of the direct-correlation functio
with global parameters~to be defined below! also can be
connected to the contact value:

cq5Rdc~R2 ! f c~qR!5:2gdRdf c~qR!, ~20!

where the regular function,f c(x)5*y,1ddy eix–y c(Ry)/
c(R), has a finite value atx50. For the analytically known
results of the PRISM equations these properties could
shown explicitly@16#, and they can now be used to simplif
the PRISM equation for low densities.

In order to extract the large distance solution of t
PRISM equations, it proves useful to shift the microsco
length scales to zero:

R˜0, s˜0 with s/R5const. ~21!

In order to evade the trivial limit of a noninteracting ide
gas, the length scale of the intramolecular correlations, to
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denoted byjc , which is proportional to the molecular siz
jc}Rg , is kept finite by increasing the index of polymeriz
tion N.

N˜` so that jc}sNn5const. ~22!

Also, in order to keep intermolecular excluded volume a
tive, the bare segmental density is increased beyond bou

%˜` so that %/%* 5const. ~23!

In the thread PRISM equations, there enters a typical den
the dilute to semidilute crossover density%* , which is fa-
miliar from scaling considerations@1#. As will be shown be-
low, %* is defined differently for scaling exponentsn below
and above a valuenc , which denotes the crossover to mea
field-like behavior:

%* }H N

jc
d for n,nc5

2

d

1

Nsd for n.nc .

~24!

Equations~21!–~24! specify the thread PRISM limit. Note
that the divergent number density%* actually corresponds to
a vanishing polymer volume fractionf and thus~semi-! di-
lute polymer solutions are studied as claimed:

f* 5%* sd}H 1/N(nd21) for n,nc

1/N for n.nc ,
~25!

wheref5O(1) corresponds to polymer melts.
The solution of the nonlinear PRISM integral equations

the general case, of course, demands to findf c(x) from Eq.
~20! for all x. However, a solution to Eqs.~12!–~15! depend-
ing on f c(0) can be constructed on large distancesr @R,s,
or, equivalently in the thread limit, for finite distances,r
.0. This holds, because in the limit ofR˜0, the excluded
volume condition Eq.~12! affects a point~of measure zero!
only, and thushq can be obtained from the Fourier integr
of g(r ) outside the corer .0. From the inverse transforma
tion and Eqs.~13! and~20!, the contact value follows in the
general case whereR denotes a vector of lengthR1:

gd2152
NA

%
E ddq

~2p!d
eiq•R

f̄ c~qR!v̄q
2

11A f̄c~qR!v̄q

. ~26!

The normalized functions v̄q5vq /N and f̄ c(x)
5 f c(x)/ f c(0) have been introduced, and the long wav
length interaction parameterA, which abbreviates the zer
wave-vector limit of the direct-correlation function:

A52N%cq505N%gdRdf c~0!. ~27!

For ~semi-! dilute solutions, the limit Eq.~21! simplifies the
PRISM integral equations, because the core condition,
~12!, becomes irrelevant, and Eq.~26! assures that the con
nection Eq.~19! is satisfied. The two further conditions, Eq
~22! and ~23!, assure that nontrivial solutions describing
-
ds:

ty,

-

-

q.

interacting polymer solution are obtained. Because of
~22!, only the long-ranged scaling form of the intramolecu
structure factor enters:

v̄q5v̄~x5qjc!5H 11O~x2! x˜0

1/x1/n x˜`.
~28!

And Eq. ~23! enforces the molecules to interact,AÞ0, so
that Eq.~26! leads to a transcendental equation determin
A ~equivalentlygd), which is the only unknown parameter i
the thread intermolecular structure factor:

%hq52NA
v̄q

2

11Av̄q
. ~29!

III. THREAD LIMIT RESULTS

In the dilute to semidilute concentration region, the thre
PRISM result forhq adopts the RPA-like form, Eq.~29!,
where the interaction parameterA needs to be found from
Eq. ~26!. The total structure factor then also has simple RP
like form:

Sq5N
v̄q

11Av̄q
, ~30!

where generallyv̄q differs from the Gaussian form and th
integrated intermolecular interaction strength,A, in general,
differs from the simple RPA approximation,A}N%Rd. Be-
cause of the large wave-vector behavior ofv̄, Eq. ~28!, the
limit R˜0 affects the integral in Eq.~26! differently for n
,nc52/d or n.nc . In the first case, the integral converg
uniformly, and integration and limit can be interchange
thus only f̄ c(0)51 enters. In the second case, the integ
converges only because of the wave-vector dependenc
f̄ c(qR), and leads to RPA or mean-field behavior.

A. Below the mean-field crossover

In the thread equation for the interaction parameterA, Eq.
~26!, the limit R˜0 can be performed trivially forn,nc
52/d, andA becomes a function of%/%* only, where the
crossover density%* 5NVd /(2pjc)

d enters:

~12gd!
%/%*

A
5E

0

`

dx
xd21v̄2~x!

11Av̄~x!
. ~31!

For size-mass scaling exponentsn corresponding to fracta
dimensions,dF51/n, equal to or exceeding the spatial d
mension, i.e., forn,1/d, the intramolecular structure o
long length scales determines the thread Eq.~31!. There,
screening of the intramolecular excluded volume has b
neglected in the present approach, and the polymer segr
tion effect predicted in the thread limit requires use of t
self-consistent PRISM approach@15#. In order to avoid this
complication, the exponentn will be restricted in the follow-
ing, n.1/d. From the two limits of the integral in Eq.~31!,
constant forA!1 andA2(22nd) for A@1, the scaling form
for the thread parameter can be determined:

A5~%/%* ! f A~%/%* !,
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where

f A~x!}H const1O~x! for x˜0

x~22nd!/~nd21! for x˜`.
~32!

In Eq. ~32!, the contact value correction was already n
glected, as it is of higher order, as can be deduced from
~27!. Actually, a scaling law follows from Eqs.~27! and~32!
for the contact value:

gd5c
~jc /R!d

N2 f A~%/%* !, ~33!

where the identical scaling functionf A from Eq. ~32! enters.
The numerical prefactorc, of course, depends on the micr
scopic details of the polymer model. Note that forn,nc the
contact value vanishes likeN2(22nd) for N˜` in the dilute
case. The scaling functionf A also determines the densit
dependence of the mesh size or density screening lengt
for large reduced densities,%@%* , the width of the total
structure factor can be estimated fromSq5(N/A)/(1
1(qjr)1/n), for qjc@1, which leads to

jr5c8s~%sd!2n/(nd21). ~34!

For a given model of the intramolecular structure fact
the thread equation, Eq.~31! with gd50, allows one to deter-
mine f A straightforwardly. Figure 1 shows the result for th
polymer model: vq5(1/N)(a,b51

N exp2(q2s̄2/6)ua2bu2n,
with the exponent given by the Flory approximationn53/5
corresponding to good polymer solutions@1,2#. Numerical
solutions of the microscopic PRISM Eqs.~12!–~15! for this
model and for not too large degrees of polymerizationN, still
exhibit rather large corrections to the thread asymptote. T

FIG. 1. Scaling functionf A(c/c* ) ~bold solid curve! of the
thread interaction parameterA versus rescaled~molecular! polymer
concentration in double logarithmic presentation for the Flory
ponent, 1/n51.67; c* 51/(2p2jc

3) is the molecular overlap con
centration. The curves labeled with degree of polymerizationN are
results from microscopic PRISM calculations of the model d
scribed in the text, wherejc50.28Nns̄ is found with Eq.~28!. Full
symbols givef A determined fromSq˜0 , and open symbols from
the contact valuegd shifted by model-dependent factors~0.088,
0.086, 0.085, and 0.085 with increasingN).
-
q.

as

,

is

can be expected to be model dependent. From Fig. 1
notices that the connection of the contact value to the sm
wave-vector interaction parameter, Eq.~27!, already holds
for values ofN where the asymptoticf A , Eq. ~32!, is not yet
reached. Differences appear for larger packing fractions
indicate concentrated or meltlike polymer packing.

The pair-correlation functiong(r ) in the thread limit can
be obtained for finite segment distances from the Fou
transform of Eq.~29!. For dilute densities,%!%* and thus
A!1, it differs from the ideal gas limit,g(r )51, because of
two molecule interactions. In the semidilute concentrat
region, %@%* and A@1, the replacementA5(jc /jr)1/n

shows thatg(r ) depends on the two length scales,jc andjr ,
independently. On length scales large compared to the m
size r @jr , the intermolecular structure factor exhibits th
well-known correlation hole@1,9,10,15#, which asymptoti-
cally for %@%* exactly cancels off the long-ranged intram
lecular correlations:

hq˜2
N

%
v̄~qjc! for q!1/jr ; %@%* . ~35!

This result is equivalent toSq!vq for qjr!1 in the semi-
dilute range@1#. Note that the self-similar structure of th
molecule leads to the power-law behavior%hq}2(sq)21/n

for 1/jc!q!1/jr , which is equivalent to a power-law varia
tion in the pair-correlation function: g(r )21}(21/
%)(s/r )d21/n for jr!r !jc @15#. For larger distances,r
@jc , Eq. ~35! describes howg(r ) decays exponentially to
its random mixing value unity.

Within the mesh size, i.e., for distances around a
smaller than the density screening length, the intermolec
correlations do not depend on the molecular size andv̄ in
Eq. ~29! can be replaced by its largeqjc asymptote from Eq.
~28!. This leads to

hq˜
2 c̄jr

d

~qjr!1/n1~qjr!2/n for 1/jc!q; %@%* , ~36!

where the limiting behaviors ofhq for qjr large or small
compared to unity can be read of immediately andc̄
5N/(%Ajr

d) approaches a number (c̄˜6.26..., for n
53/5). Note that Eq.~34! for the density screening lengt
ensures a smooth crossover of Eq.~36! to Eq. ~35! in the
correlation hole region. The variation of the pair-correlati
function, which describes the mesh structure forr !jc , can
thus be obtained in closed form, if the neglect of the cutoff
the correlation hole atr *jc included in Eq.~35!, is kept in
mind. Forr !jc , g(r ) depends onr /jr only, with

g~r !512 c̄E ddy

~2p!d e2 iy–r /jr
1

y1/n1y2/n

˜H ~r /jr!2/n2d, r !jr , r @s,R

12~jr /r !d21/n, r @jr ; r !jc ,
~37!

where c̄ ensuresg(0)50 in agreement with Eq.~31! and
constant prefactors of order unity have been suppresse
the final two lines. For polymer chains in good solvents,
smooth increase,g(r !jr)}(r /jr)1/3, by accident agrees
with the estimate from Ref.@21#, g(r !jr)}(r /jr)(g21)/n

-

-
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'(r/jr)
1/3, whereg is associated with the entropy of a sing

polymer chain@2#. The depth of the correlation hole display
an intriguing dependence on the fractal and spatial dim
sionalities. The probability to find a segment of another po
mer within the considered molecule decreases strongl
1/n˜d. From Eq. ~37! one estimatesg(r'jc)21}
21/Nnd21, which becomes a number of order unity in th
casen51/d. The smooth variation ofg(r ) at short distances
explains why the scaling of the correct contact valuegd , Eq.
~33!, with macroscopic variables can be estimated from
thread solution, Eq.~37!, by gd}g(s); its dependence on th
ratio of the microscopic length scaless/R, however, cannot
generally be recovered in this way@16#. Note that Eqs.~34!–
~37! asymptotically apply for semidilute solutions,%@%* ,
whereas Eqs.~29!, ~30!, and~32! describe the full dilute-to-
semidilute crossover region.

B. The mean-field cases

The condition Eq.~26! for the contact valuegd , or
equivalently, for the thread parameterA becomes indepen
dent of the microscopic interaction details only forn,nc .
Above the crossover exponent,n.nc52/d, the integral over
the effective potential as it entershq is determined by the
local structure inf c(qR). In the thread limit, Eq.~26! be-
comes a linear, density-independent equation forgd with so-
lution:

gd51Y F 11E ddq

~2p/R!d eiq•R~qs!22/n f c~qR!G .
~38!

Thus, a finite density-independent contact value follows
the mean-fieldlike casesn.nc . Obviously, its exact value
depends on the solution of the PRISM equations conside
all microscopic details and is beyond the reach of the thr
PRISM approach. The interaction parameterA thus shows
the density scaling as expected within RPA. The redu
density%/%* appears, with%* 51/(Nsd), andA becomes,
with an unknown numerical constantc̃, which, however,
may depend on the ratios/R of the microscopic length
scales:

A5 c̃%/%* . ~39!

In the semidilute density regime, the width of the total stru
ture factor again determines the density screening len
Sq5(N/A)/(11(qjr)1/n) for qjc@1, with the result

jr5 c̃8 s~%sd!2n. ~40!

Again, the numerical prefactorc̃8 depends on the polyme
model. The result, Eq.~35!, discussed for the intermolecula
structure in the correlation hole region holds. The me
structure factorh(q@1/jc), however, shows a different den
sity scaling:

hq˜
2 ĉsd~jr /s!2/n

~qjr!1/n1~qjr!2/n for 1/jc!q ~41!

that again, with Eq.~40!, leads to a smooth crossover fo
intermediate distances, 1/jc!q!1/jr , but to a small dis-
tance divergence of the thread pair-correlation functi
n-
-
if

e

n

g
d

d

-
h,

h

,

g(r )}2(s/r )(d22/n) for r !jr . This results from the neglec
of the wave-vector variation of the direct-correlation fun
tion, Eq. ~20!, and reinforces that the validity of the threa
g(r ) is restricted tor @s for n.nc , where g(r ) is still
positive, as it must be by definition.

IV. DISCUSSION AND COMPARISON
WITH OTHER APPROACHES

In this paper, scaling limits appropriate for the dilute
semidilute concentration regime of macromolecular solutio
have been derived starting from the microscopic PRISM
tegral equations. RPA-like expressions for the total den
fluctuations, the structure factorSq , Eq. ~30!, were given,
where the density scaling of the interaction parameterA was
deduced from the local excluded volume constraint, Eq.~12!.
The thread interaction parameter is connected to the m
familiar excluded volume parameter v via A
5(NAM%/M0

2)v, whereNA is Avogadro’s number,M is the
molecular weight, andM0 is the monomer weight. Effective
density-dependent excluded volume parametersv(%) have
often been used in connection with RPA expressions@3,21#,
and Eq.~32! justifies this.

The crossover of the single chain correlations to Gauss
large-distance behavior forr @jr due to intramolecular ex-
cluded volume has been neglected and would affect
model forvq , Eq. ~5!, and, consequently, the thread resu
for large distances. Use of self-consistent PRISM@10# to
incorporate this would be required, but Eq.~32! for the
thread parameterA indicates that no change of its densi
scaling can be expected.

The crossover density%* , Eq. ~24!, arises from the full
microscopic PRISM equations as the relevant low-den
scale, and importantly, the qualitatively different definitio
in the mean field,n.nc52/d, and in the nontrivial cases
n,nc , are recovered. Whereas forn,nc the molecular
crossover density,c* 5%* /N, is defined in terms of the mo
lecular size only,c* }1/Rg

d for n.nc ; in the mean-field
cases also a microscopic length, the segmental hard-cor
ameterR, entersc* }1/(Rg

2/nRd22/n) for n.nc . This indi-
cates that intermolecular steric interactions become imp
tant as soon as the macromolecules fill space forn,nc ,
whereas for the more open molecules,n.nc , much higher
densities are required.

For chain polymers, the upper critical dimension, whi
separates mean-field and fluctuation-dominated structu
agrees with the renormalization-group results,dc52/nc54
@1,2#. For rod polymers,n51.nc , the mean-field-like be-
havior underlies the successful Onsager theory of the n
atic transition@22# and is generally argued to be true@23#.
Note that in the studied PRISM theory orientational, ‘‘nem
atic’’ interactions are not treated correctly@10#, and thus a
nematic transition for rods is missed. Very recently, PRIS
has been generalized to treat oriented polymer fluids and
isotropic-nematic liquid crystal transition@24#. As the ~iso-
tropic! crossover densityc* for rods is of the order of the
nematic transition density@22#, a suppression of nematic or
der is required to study the described isotropic semidilute
solutions experimentally. Networks of stiff semiflexible mo
ecules like actin may provide good systems@18#.

Of course, the full PRISM integral equations, which ha
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been introduced to study dense polymer systems with sh
ranged meltlike correlations@9#, incorporate wave-vector
dependent corrections in, e.g., the effective interactioncq ,
see Eq.~14!, when 1/q approaches local length scales.

From the compressibility, which is connected to the ze
wave-vector limit of the total structure factor, the equation
state can be obtained, whereP denotes the osmotic pressu
@19,10#:

P

%kBT
5

1

N
1

1

%
E

0

%

d%8
A~%8!

N

}H 1

N
@11O~%/%* !#, %!%*

~%sd!1/nd21, %@%* , n,nc

%sd, %@%* , n.nc ,

~42!

when A is given by Eq.~32!. The non-mean-field behavio
for n,nc for semidilute concentrations@15# agrees with the
exact Des Cloizeaux result@2#, and the second virial coeffi
cient, 1/(N%* )}Rg

d/N2, recovers the picture of dilute poly
mer coils interacting like hard spheres of radiusRg @17#, but
it does not vanish for diluteQ solvents, i.e., forn5 1

2 in the
present approach. PRISM theory apparently correctly c
tures the leading asymptotic behaviors, the free molec
limit P5(%/N)kBT for %!%* , and the N-independent
power law for%@%* , but the next to leading terms are n
described correctly, in general.

The structure of the polymer mesh in semidilute solutio
i.e., the intermolecular structure factorhq on length scales o
the order of the density screening lengthjr has not been
conclusively discussed from first principles calculations. T
thread PRISM results for the non-mean-field-like case
polymer chains in good solvents give explicit results, E
~36! and ~37!, which can be compared to results from oth
approaches.

A. Comparison with scaling considerations

Detailed scaling law considerations ofhq in the limit
qRg@1 have been presented in@4# and can be directly com
pared with Eq.~36!. The limit, hq}jr

d for 1/Rg!q!1/jr

strongly differs from the correlation hole behavior,%hq5
2(qs)1/n with s the Kuhn’sche-segment size, predicted
the thread PRISM theory for this wave-vector windo
Physically, the long-ranged variation ofhq arises from the
rearrangement of the polymer mesh around a molecule
distances up to the molecule’s size. This adjustment comp
sates for the excess density due to the considered mole
leading to the small total density fluctuations expected
concentrated systems. The correlation hole has been
dicted and discussed for polymer melts@1#, but PRISM
theory also predicts it for semidilute solutions@9#, in agree-
ment with scaling considerations in@21# but in disagreemen
with the mentioned scaling picture presented in@4#. Intrigu-
ingly, PRISM theory, Eq.~37!, recovers the tendency o
macromolecules to segregate forn51/d as discussed fo
ideal chains in two dimensions@1#.
rt-

o
f

p-
le

,

e
f
.

r

.

n
n-
le,
r
re-

In agreement with the thread PRISM result, a scaling l
is postulated in Ref.@4# for the intermolecular structure fac
tor inside the coil radius,h(q@1/Rg)5h̄(qjr), which leads
to the predictionhq}q12d for q˜` @4#. As a scaling law
can only hold for distances large compared to the mic
scopic length scales,qs!1, this result can be compared wit
the thread scaling power law,hq}q22/njr

d22/n in Eq. ~36!,
and again differs. Within thread PRISM the behavior ofhq
arises naturally as it matches smoothly to the microsco
limit, hq;gdq2d cosqR for qR@1, because the contac
value vanishes asymptotically,gd}(s/jr)2/n2d for jr@s.
This supports the expectation in@21#. Computer simulations
could address this question for polymer chain solutions
shown in Sec. IV C, where corrections to the low-dens
scaling law, Eq.~33!, need to be considered, which will aris
due to finite packing fractions.

Accepting the existence of a scaling law for the cont
value of macromolecules in solutions, Eq.~33! can be used
to connect the PRISM results to field-theoretic calculatio
for two-polymer systems.

B. Comparison with field-theoretic calculations

Field-theoretic calculations, which employ the mappi
of the polymer problem onto the O(n˜0) magnetic model,
lead to numerous single-chain results and have recently b
extended to provide information about the intermolecu
structure factor on short length scales@4,5#. In @4#, the men-
tioned behaviorhq}q2d for q˜` is recovered from the
field-theoretic calculation and used to support the sca
picture discussed in the previous section. The implicatio
for g(r ) can be compared with another field-theoretic calc
lation, which studies the number of intersections of tw
polymer chains@5#. Let S2(Re) be the number of intersec
tions of two random~or self-avoiding! walks whose end-to-
end distance isRe :

S2~Re!

V~4ps2!d/25 (
a,b51

N

^d~r0
(2)2r0

(1)2Re!d~ra
(2)2rb

(1)!&.

~43!

For intermediate distancesRe , s!Re!Rg , where the two
polymers overlap but local effects do not dominateS2 , the
scaling S2}(s/Rg)v12(P) is predicted, where the two
molecule correction to scaling exponentv12 appears@5#. The
contact value can now be obtained fromS2 by integrating
over all possible distances and~trivial! factors of normaliza-
tion, as can be seen from Eqs.~11!, ~16!, and~21!.

gd5E ddRe

S2~Re!

~4ps2!d/2N2 . ~44!

Using the results for two polymers from@5# to obtain the
scaling of the contact value in the dilute case, one finds

gd
RG}

Rg
d2v12(P)

N2 for %˜0. ~45!

The thread PRISM result, Eq.~32!, differs from this, in gen-
eral, because in PRISM theory the correction to scaling
ponent is approximated tov12

thread50. Its value in quadratic
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order in «542d is known, and the value appropriate fo
polymer chains in good solvents turns out to bev12(G)
5 1

2 «2 19
64 «21¯'0.40 @5#. It can be compared to th

PRISM and to the mean-field approximation,v12
RPA5d

22/n, which qualitatively differs because it is negative. T
thread approximation,v1250, is correct at and above th
upper critical dimensiondc .

It appears difficult to envisage simple forms ofg(r ) that
reconcile the predictionhq}q2d for q˜` @4# with the re-
sults forS2 @5#, and the dilute limit of thread PRISM theor
qualitatively agrees with the latter.

C. Comparison with Monte Carlo simulations

Monte Carlo simulations are well suited to study the
termolecular structure of polymer solutions but face the d
ficult challenge to achieve a clear separation of the th
length scales, segment sizes ~or excluded volume sizeR),
density screening lengthjr , and molecular sizeRg ~or mo-
lecular correlation lengthjc); see the discussion in@6#.
Whereas in@6# in the range 1/Rg!q!1/jr a discrimination
of the two predictions,hq}const. from scaling consider
ations @4# and hq}q2x with x'1/n ~as follows from the
PRISM treatment of the correlation hole!, appears possible
and appears to support the latter; no clear conclusions a
the exponent in the asymptotic behavior,hq˜q2x for 1/jr

!q!1/R, with x5d53 ~scaling picture!, x54 ~RPA!, or
x52/n'3.34 ~thread PRISM!, were possible. Even recen
large-scale simulations of the bond fluctuation model~BFM!
@25,26# do not provide a conclusive test of the largeq de-
pendence ifhq is considered@27#. Figure 2 shows data from
Ref. @27# for semidilute solutions and rather large cha
lengths,N52048, wherejc594, jr514 for c/c* 597.7,
andjr531.1 for c/c* 525.6, and the steric segment size
R52 in units of the lattice constant of the BFM. For a fit, th

FIG. 2. Intermolecular structure factorshq from a Monte Carlo
simulation of the BFM for polymers of lengthN52048 (jc594 for
n50.588; all lengths given in units of the lattice constant of t
BFM!. The data are taken from@27# and are shown scaled withjr

determined from the correspondingg(r )’s of Fig. 3. The1’s be-
long to the rescaled densityc/c* 525.6 and the3’s belong to
c/c* 597.7. The asymptotic thread PRISM result, Eq.~36!, shifted
by a correction factor 0.25 is shown as a solid line, whereas
dashed line indicates a power lawq23.80 following from Eq. ~47!.
Vertical bars mark whereq51.
-
-
e

ut

asymptotic thread PRISM prediction, Eq.~36!, is shifted by a
factor indicating that nonasymptotic corrections toc̄ cannot
be neglected.

A clearer picture of the polymer mesh structure is p
vided by the pair-correlation functiong(r ) that is the Fourier
transform ofhq and asymptotically should follow Eq.~37! in
the thread limit,s,R!jr and jr!jc}Rg . Figure 3 shows
the twog(r ) for the above parameters, wherejr is defined
by collapsing the simulation data onto the master curve
g(r 5jr)50.747. Note that this is an unfamiliar definition o
jr , which gives values~theoretically! proportional to the
standard ones. These values ofjr also produce the collaps
of the hq onto a common curve shown in the inset of Fig.
and lead to a reasonable collapse of the pair-correlation fu
tions onto a common master curve. Finite-size correcti
enter from short distances because of the finite excluded
ume segment sizesR/jr . These corrections can also be u
derstood as finite packing fraction corrections. Larg
distance deviations from a common curve appear becaus
the finite chain sizesjc /jr . Nevertheless, the short-distanc
behavior ofg(r ) provides a sensitive test of the various pr
dictions. The predictionhq˜1/qd would correspond to a
logarithmic variation ofg(r˜0), which appears to be rule
out by the data. Also the thread PRISM prediction,g(r
˜0)}r 1/3, appears incompatible with the data, even if fin
segment-size corrections are approximated by a shift of thr
origin. The RPA prediction for Gaussian polymers,g(r
˜0)2gd}r , of a linear increase inr , can describe the dat
over small intervals~like 0.1,g,0.25) but fails to account
for the slight curvature of especially the lower density curv
Moreover, the contact value of the RPA cannot be expec

e

FIG. 3. Pair-correlation functionsg(r ) versus rescaled distanc
r /jr of the BFM for the two densities,c/c* 525.6 ~thin solid line,
jr531.1) andc/c* 597.7 ~thin dashed line,jr514.0) from @27#.
The choice ofjr collapses the curves atg50.747. Circles mark the
contact valuesgd . The asymptotic thread PRISM prediction, E
~36! ~thick solid line!, and shifted according to a finite segment si
~thin dot-dashed curve! are shown. A smallr asymptote, g
50.99@(r 20.855R)/jr#0.80 according to Eq.~47! is indicated by a
long dashed curve, whereR52 in units of the lattice constant is th
excluded volume segment diameter of the BFM, and a lin
asymptote is given by a dotted line. The vertical bar denotesjc /jr

for the lower density. The inset enlarges the small-r region showing
the shifted thread PRISM, the power law, and the linear curves w
the same line types as in the main part.
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to vanish asymptotically if parameters appropriate for a fi
hq are used. An increase in the range of a power-law fi
g(r ) at the lower density up to an interval 0.1,g,0.42 is
possible if the following assumption about the pa
correlation function for semidilute solutions is made:

g~r !˜ḡ~r /jr! for jr˜`, jr /jc˜0, ~46!

ḡ~x!1!}x2/n2d1v12(P), ~47!

where for dilute cases the same power law with the repla
ment jr˜jc can be expected from scaling consideratio
This power law would match the scaling law forg(r ) for r
˜0 smoothly to the calculated vanishing contact valuegd
from Eq. ~45!. Note that such a matching is predicted
PRISM. In Eq.~47!, however, the exponent is corrected b
cause the correction to scaling exponentv12(P) is taken into
account. According to scaling arguments@5,28#, there is a
term of the form of Eq.~47! present in the intramolecula
correlations also, although it is masked by chain-end effe
there.

The expected power law for good solutions,g}r 0.80 for
r !jr with n50.588 andv50.40@1,2,5#, is compatible with
the simulation data, if a finite shift owing to a finite segme
size is anticipated. The power lawhq˜1/q2/n1v12(P) also is
compatible with the data as shown in Fig. 2, but could l
be argued on data forhq only.

V. CONCLUSIONS

The thread PRISM results derived and discussed here
tify earlier phenomenological extensions of RPA-like e
ys
o
o

e-
.

-

ts

t

s

s-

pressions. The density dependence of the excluded vol
parameter is derived from a microscopic incorporation
intermolecular excluded volume and intramolecular conn
tivity. Various comparisons with rigorous field-theoretic ca
culations show that leading asymptotic predictions, even
non-mean-field-like situations, are captured correctly in
PRISM integral approach. The correction to scaling exp
nent, which appears in the molecular mass dependence o
contact value of two polymers, provides a typical exam
where thread PRISM provides a much better description t
mean-field theory but fails to describe all nontrivial corre
tions. PRISM theory suggests useful concepts like the p
correlation functiong(r ) and predicts scalings laws, whic
provide a framework for the interpretation of data, if th
exponents are corrected. Thread PRISM thus turns out ra
useful for semidilute solutions, where it explicitly describ
the intermolecular correlations of the polymer mesh and
sults from more rigorous approaches are scarce. Moreo
as PRISM theory is successful for polymer melts, it provid
the unique possibility to approach polymer systems at
densities.
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